
OwlDrive 24-250 open frame

owlDrive User Guide
Version: 25/10/2023

Contents
Overview...2

Protocol overview...2

What is FOC control...3

 Motion control overview..4

Hardware overview...5

Attention: owlDrive power should be 16-36V DC. The power supply must cover the max.
motor current and the rated motor voltage. Use an external fuse to protect motor and motor
driver. The fuse value must fit to the motor peak current...5

Quickstart: Getting your motor to run (motor torque control)..6

Example application: motor velocity control..9

Open-loop velocity control...10

Example application: position control...11

Example application: motor angle synchronization..12

FOC commander protocol (UART/USB)..14

CAN protocol..15

Motor parameters..19

BLDC motor formulas..20

Appendix A...22

Overview
owlDrive is a Field Oriented Control (FOC) driver for nearly all kind of DC brushless motors.
It offers various features to configure different motor types and the integrated controller can
talk different protocols on different hardware. The easy configuration interface via USB serial
terminal provides a simple but effective configuration menu to the user, without specific
software apps or tools.

Attribution

owlDrive is inspired by the open-source project ‘SimpleFOC’ (www. simplefoc.com). We use,
under open-source licensing, parts of the SimpleFOC libraries and implemented several,
additional features.

Protocol overview
UART and USB serial uses FOC commander protocol which communicates directly with the
FOC-controller. The configuration (motor config, motion config, CAN config etc.) can only
be changed and saved via USB serial or CAN bus.

What is FOC control
To understand how this works, we first look at the structure of the motor. A three-phase motor
incorporates windings that are displaced by 120 degrees (or a fraction of that) along the stator.

The blue rotor contains the permanent
magnets (N/S pairs) in an inrunner and
outrunner motor. The green stator holds
the electromagnetic coils.

Feeding the windings with three voltages
separated in phase by one-third of a cycle
produces a rotating magnetic field.

The rotor in an induction machine
consists of a closed circuit. When the
stator magnetic field sweeps the rotor, an
EMF is induced in the rotor circuit, and
produces a current. The current produces
its own magnetic field, and this induced
magnetic field interacts with the stator
magnetic field to producing mechanical

force upon the rotor.

These mechanical forces form a force couple, since the direction of force produced is opposite
on opposite sides of the rotor, and result in a mechanical torque upon the rotor. The torque
produced is proportional to the product of the magnitudes of the fluxes, and the sine of the
angle between them.

To implement the basic principle of FOC means to maintain a desired alignment between the
stator flux and rotor flux. To do this, it is necessary to control the stator currents that produce
the stator flux. An angle closer 90 degree produces more flux per unit current.

Motion control overview
Three main motion control modes are supported

• torque (you define the voltage as target for the motor)

• velocity (you define the motor shaft velocity as target for the motor)

• position control (you define the shaft angle as target for the motor)

Because velocity control depends on proper working torque control, you have to start testing
with torque control for a new motor. After that is working, you can test velocity control and
after that is working you can try out position control.

NOTE: The above schema shows a ‘closed-loop’ Torque control which means that the
position of the motor shaft is detected by a sensor (Hall etc.) and feed back to the torque
controller. To test your motor without any sensors, you can use ‘open-loop’ where no
feedback sensors are required.

Hardware overview
The owlDrive offers several connectors to connect the motor, sensor and the
controller interface:

Attention:
owlDrive power should be 16-36V DC. The power supply must cover the max. motor
current and the rated motor voltage.
Use an external fuse to protect motor and motor driver. The fuse value must fit to the
motor peak current.

Attention:
Do not use the owlDrive in applications where malfunctions of the owlDrive
(e.g. due to problems in voltage, signal quality or other causes) can cause
damage to property or personal injury. Or secure the use of the owlDrive with
additional backup / security measures. Since malfunctions cannot be ruled
out, owlRobotics GmbH cannot assume any liability for the application!

Quickstart: Getting your motor to run (motor torque
control)
Before you start, refer to Appendix A and get familiar with the handling and warnings.

In this section you will install the serial terminal, connect your motor and configure it.

1. Connect your motor as shown below:

2. Install Arduino legacy IDE: https://downloads.arduino.cc/arduino-1.8.19- windows.zip
and start it. From the menu, choose ‘Tools→Serial Monitor’ to start the serial terminal.

The following menu should appear:
To choose a menu point (or to send values), you will enter the menu number (or the
value) and press ENTER.

NOTE: You can activate this menu at any time by sending ‘0’ (and ENTER) to the
driver. You can exit any menu by sending again ‘0’ (and ENTER).

3. Choose ‘Selected profile’ and choose your profile (e.g. ‘Testing’) (NOTE: you can
reset the complete configuration to a preset configuration with this at any time).

4. Choose ‘Selected motor‘ and choose your motor. If your motor is not listed, you can
choose ‘Generic’.

5. Choose ‘Selected PCB’ and choose your PCB.

https://downloads.arduino.cc/arduino-1.8.19-windows.zip
https://downloads.arduino.cc/arduino-1.8.19-windows.zip

6. Choose ‘Save to EEPROM and reboot’ to restart the driver with the new settings.

7. If your motor was not listed above, you will have to configure the motor. Choose
‘Motor menu’. The following menu will appear:

8. Configure:

• The kv-rating (rpm per volt) (if you don’t know the value, keep the default)

• nominal rpm (if you don’t know the value, keep the default)

• number of rotor pole pairs (N/S): (if you don’t know the value, you can find it out via
the menu point ’perform motor sensor align’)

The blue rotor
contains the
permanent
magnets (N/S
pairs) in an
inrunner and
outrunner
motor. The

green stator holds the electromagnetic coils.

• sensor direction: how the hall sensor direction is (counter-clockwise or clockwise) in
relation to the motor rotor (if you don’t know the value, you can find it out via the
menu point ’perform motor sensor align’)

• zero electric offset: which mechanical offset (degree in radiant) the hall sensor has in
relation to the motor rotor.

9. To find out any missing parameters of your motor (or to verify they are correct),
choose ‘Perform motor sensor align’. The motor will now rotate slightly for a few
seconds. The output will be as shown:

If a wrong number of rotor pairs (pole pairs) was detected, an estimation will be
shown (and you have to round up that estimation to an integer number). Any found
zero electric offset and sensor direction will be automatically changed in the
configuration.

10. Now it’s time to test the new settings. In the main menu, choose ‘Save to EEPROM
and exit’ to permanently save the configuration.

11. Send ‘M5’ to the driver (which means the target voltage should be 5 volts).

The motor should start turning. You can monitor certain motor values in realtime
(target, velocity in rpm/radiants per second, current, angle in radiant etc.).

Example application: motor velocity control
In this application the velocity of the motor shaft is controlled. It is assumed that your motor
is running properly via torque control mode (as used the section above).

1. Enter the main menu, and choose ‘Motion control mode menu’.

2. Choose motor control mode (outer loop): velocity.

3. Configure the velocity control via the ‘PID’ parameters.

• PID-P: The higher the P-value (gain), the faster the controller tries to reach the
velocity target (set-point).

• PID-I: The higher the I-value (integration), the more the controller accumulates for
control errors (set-point to current-point velocity differences).

• PID-D: keep this to zero (0).

• PID output ramp: allows you to restrict acceleration

NOTE: You can get example preset values via the menu point ‘load above settings
from a preset’.

4. If using a hall sensor, make sure to use a low-pass filter for the sensor. Choose
‘velocity low-pass filtering time constant’ and the value ‘0.3’. For magnetic encoders,
choose low-pass filtering value ‘0’.

5. In the main menu, choose ‘Save to EEPROM and exit’.

6. Send ‘M10’ to the driver (which means the velocity target should be 10 radiants per
second).

The motor should start turning. You can monitor certain motor values in realtime
(target, velocity in rpm/radiants per second, current, angle in radiant etc.).

Open-loop velocity control
If you cannot get your motor to run with both torque and velocity control, you might have
issues with your feedback sensor (Hall etc.). In this case it is recommended to try out the
open-loop velocity control.

1. Enter the main menu, and choose ‘Motion control mode menu’.

2. Choose motor control mode (outer loop): velocity_openloop.

3. Choose ‘torque control mode voltage limit‘ and the value ‘3.0‘ to limit the voltage.

4. In the main menu, choose ‘Save to EEPROM and exit’.

5. Send ‘M10’ to the driver (which means the velocity target should be 10 radiants per
second).

Example application: position control
In this application the position of the motor shaft is controlled. It is assumed that your motor
is running properly via torque and velocity control mode (as used the sections above).

1. Enter the main menu, and choose ‘Motion control mode menu’.

2. Choose motor control mode (outer loop): angle.

3. Configure the velocity control via the ‘PID’ parameters (see section above for more
details).

4. Configure the angle control via the P control value. The higher the angle P value, the
faster the controller tries to reach the target angle.

5. Configure the velocity limit (radiant per second). Allows you to limit the velocity for
the controller to reach the target angle.

6. In the main menu, choose ‘Save to EEPROM and exit’.

7. Send ‘M31.4’ to the driver (which means the target angle should be 5 turns (2 * PI * 5
= 31.4 radiants).

The motor should start turning. You can monitor certain motor values in realtime
(target, velocity in rpm/radiants per second, current, angle in radiant etc.).

Example application: motor angle synchronization
In this application two additional motors are synchronized to the first motor. The first motor (master) will
broadcast its shaft angle and the remaining motors (slave) will follow this shaft angle (they will use it as their
target angle).

It is assumed that your motor is running properly via torque, velocity and angle control mode
(as used the sections above) and the motion control mode is configured for angle (see section
above).

1. Enter the main menu, and choose ‘CAN menu’

2. Choose ‘local CAN ID’ and choose a unique ID for each driver:
1st motor (master): 300
2nd motor (slave): 301
3rd motor (slave): 302

3. For the master motor, choose ‘value broadcast mask (angle), so the driver broadcasts the shaft angle.

4. For the slave motors, choose ‘follow remote CAN bus ID (300)’, so the slave motors will follow the
master motor.

5. For the slave motors, choose ‘follow remote value (angle)’, so the slave motors will use the master shaft
angle as their angle target.

6. In the main menu, choose ‘Save to EEPROM and exit’.

7. Send ‘M31.4’ to the master motor driver (which means the target angle should be 31.4 radiants). The
master motor should start turning. The slave motors should start turning as well and follow the shaft
angle of the master motor.

FOC commander protocol (UART/USB)
general commands

MC0 activate torque control

MC1 activate velocity control

MC2 activate angle control

ME0 enable motor status

ME1 disable motor status

MVP, MAP, etc. get a specific setting (velocity PID P, angle PID P in this example)

torque control examples

M5 set target 5 volt

velocity control examples

M20 set velocity target 20 rad/s

M20 12 set velocity target 20 rad/s with torque limit 12 volt

MVP1 set velocity PID P (proportional gain) to 1

MVI1 set velocity PID I (integral gain) to 1

MVD1 set velocity PID D (derivative gain) to 1

MVR100 set velocity PID output ramp (maximum speed of change of the output
value) to 100

MVL100 set velocity PID limit (maximum output value) to 100

MVF0.1 set velocity low-pass filtering time constant to 0.1

angle control examples

M3.14 20 set angle target 3.14 rad with velocity limit 20 rad/s

M3.14 12 20 set angle target 3.14 rad with torque limit 12 volt and velocity limit 20
rad/s

MAP1 set angle PID P (proportional gain) to 1

MAL100 set angle PID limit (maximum output value) to 100

MAR10000 set angle PID output ramp to 10000

monitoring examples (https://docs.simplefoc.com/commander_motor)

MMG / MMG0 get variable - target

MMG1 get variable – voltage q

MMG2 get variable - voltage d

MMG3 get variable – current q

MMG4 get variable – current d

MMG5 get variable – velocity

MMG6 get variable - angle

MMG7 get all variable

monitoring output formater examples

@ get monitor output mode

@1 set on user request no add. output

@2 set user friendly mode

@3 get machine_readable mode

The full FOC commander protocol is described here:
https://docs.simplefoc.com/communication

A graphical user interface (SimpleFOCStudio) is available for this protocol (to use it,
deactivate the serial monitor output in the profile menu): https://docs.simplefoc.com/studio

A web interface (simplefoc-webcontroller) is available for this protocol (to use it, deactivate
the serial monitor output in the profile menu):
https://github.com/geekuillaume/simplefoc-webcontroller

CAN protocol
In this section the CAN protocol is described.
The Controller Area Network protocol (CAN or CAN Bus) is a two-wire (twisted-pair),
bidirectional serial bus communication method that allows electronic subsystems to be linked
together and interact in a network.
Please inform yourself about the basics of CAN bus wiring and use appropriate CAN twisted
pair wire.

https://github.com/geekuillaume/simplefoc-webcontroller
https://docs.simplefoc.com/studio
https://docs.simplefoc.com/communication
https://docs.simplefoc.com/commander_motor

The termination of the CAN bus is possible with an external 120 Ohm resistor at the
beginning and the end of the bus or use the possibility of the solder bridge on the first and last
owlDrive to activate the terminating resistors on board.

CAN frame protocol format

CAN
address

CAN byte 0-1 CAN byte 2 CAN byte 3 CAN byte 4-7

configured
message ID

source/
destination

command value data

message ID: all motor drivers (nodes) that communicate with each other should use the same
message ID.

Source/destination:

bits 0..5 – source node ID (valid IDs are 1-62)
bits 6..11 – destination node ID (valid IDs are 1-62 , 63 means all nodes)

Command types:

0 – driver value information
1 – request driver to send value information
2 – set driver value
3 – save driver value

Value types:

0 – target (data type: float)
1 – voltage (data type: float)
2 – current (data type: float)
3 – velocity (data type: float)
4 – angle (data type: float)
5 – motion control mode (data type: 1 byte)
6 – config memory (data type: ofs_val)
7 – motor enable (data type: 1 byte)
8 – angle P controller (data type: float)
9 – max. velocity control of the position control (data type: float)
10 – velocity P (data type: float)
11 – velocity I (data type: float)
12 – velocity D (data type: float)
13 – velocity output ramp (max. output change/s) (data type: float)
14 – velocity low-pass filtering time constant (sec) (data type: float)
15 – error status (data type: byte)

Data types:

1-4 bytes byte 0 byte 1 byte 2 byte 3

1 integer integer value (little endian)

float float value (little endian)

ofs_val short ofs (little endian) byte value -/-

Error status constants:

0 – no error
1 – no CAN communication
2 – no settings
3 – undervoltage triggered
4 – overvoltage triggered
5 – overcurrent triggered
6 – over-temperature triggered

Examples:

A) request driver (with nodeID=1) to send target value

Destination command value data

1 1 0 not used

B) driver (with nodeID=1) sends target value

Source command value data (4 byte float)

1 0 0 3.14

C) set driver (with nodeID=1) target value

Destinaton command value data (4 byte float)

1 2 0 3.14

Motor parameters
This section describes the motor parameters.

Deadtime: The deadtime is the time where neither the High-side nor the Low-side of the a
MOSFET coil is switched, so the coil is in high-impedance during that time. A higher
deadtime will reduce motor heat however the supply voltage noise for the owlDrive may
increase due to motor‘s back-electrical-force (EMF) and can lead to a reset of the owlDrive.

Phase inductance: At higher speeds, there is a lag between motor voltage and current due to
the motor inductance. Setting the correct phase inductance will phase-shift the voltage to
compensate this lag. As a consequence the motor achieves higher velocities.

BLDC motor formulas
1. Motor Kv rating, rotation speed (RPM) and back EMF (volt):

Kv: RPM/V unloaded motor speed per Volt (peak)

2. Motor resistance and motor inductance
Usually BLDC motors are connected in WYE (Star) configuration. The other type of
configuration is Delta connected which is very rare.

In WYE (Star) congifuration, the phase
wingdings are connected as shown in the above
diagram. The terminals A,B, and C are generally
accessible. Most motor manufacturers do not
provide Neutral Point access. So, machine
parameters (resistance, inductance here) can only

be measured across A-B, B-C, and C-A, which are line to line and these parameters
are called line values (line resistance, line inductance). And what we engineers use for
motor control is phase values (phase resistance, phase inductance). Here, phase values
are nothing but half the line values.

Resistance:
You can use an Ohm Meter or a multimeter. Measure resistance across A-B, B-C, and
C-A. Being a balanced system, they should result the same.

What if you don't have an Ohm Meter
handy?
Pass some known current through the
phase winding (say A-B), measure the

voltage drop across the two terminals. Now, Voltage Drop over Current gives you the
resistance of the winding (A-B).

Note: Make sure you start with lower values of currents as you wouldn't want to burn
the motor winding by passing larger currents.

Inductance:
Connect a LCR meter on each phase. Start with A-B. Slowly turn the rotor for one

revolution, in small increments (say 30 degrees) and record the Inductance value.

Repeat the same for B-C and C-A. Tabulate the readings and observe carefully the
values of each phase. If the values are found to be similar, you can average them out
and use the averaged value as Line-to-Line inductance, half of which is Phase
Inductance.

Now, what if you don't have a LCR meter.
Have a low voltage ac source handy. Supply the ac voltage to one pair of the three
wires (say A-B). Measure the current consumed and work out the following equations.

Since line parameters are being calculated, the resistance that need to be fed in the
above equations is line-to-line and the frequency component is the frequency of the ac
voltage used.

3. Motor torque, motor torque coefficient

Kv: RPM/V
Kt: Motor torque coefficient = 60 / (2PI*Kv)
current: amps
Torque: Nm

Torque [Nm] = 60 / (2PI * Kv) * current

Further reading

1. Brushless motors animations

https://fab.cba.mit.edu/classes/865.18/motion/brushless/index.html

2. How to calculate motor poles & motor KV
https://www.tytorobotics.com/blogs/articles/how-to-calculate-motor-poles-and-
brushless-motor-kv

3.

Appendix A
Handling the owlDrive.

 USB plug in and out

Plug in the USB plug into the owlDrive
USB connector as shown in the picture
(green arrow).
If the USB plug is connected, do not
bend the plug in any other direction.
This can damage the USB connector on
the owlDrive board.

Attention:
owlDrive 250-24 power should be 16-36V DC. The power supply must cover the max.
motor current and the rated motor voltage.
Use an external fuse to protect motor and motor driver. The fuse value must fit to the
motor peak current.

Attention:
Do not use the owlDrive in applications where malfunctions of the owlDrive (e.g. due to
problems in voltage, signal quality or other causes) can cause damage to property or
personal injury. Or secure the use of the owlDrive with additional backup / security
measures. Since malfunctions cannot be ruled out, owlRobotics GmbH cannot assume
any liability for the application!

https://www.tytorobotics.com/blogs/articles/how-to-calculate-motor-poles-and-brushless-motor-kv
https://www.tytorobotics.com/blogs/articles/how-to-calculate-motor-poles-and-brushless-motor-kv
https://fab.cba.mit.edu/classes/865.18/motion/brushless/index.html

	Overview
	Protocol overview
	What is FOC control
	Motion control overview
	Hardware overview
	Attention: owlDrive power should be 16-36V DC. The power supply must cover the max. motor current and the rated motor voltage. Use an external fuse to protect motor and motor driver. The fuse value must fit to the motor peak current.
	Attention: Do not use the owlDrive in applications where malfunctions of the owlDrive (e.g. due to problems in voltage, signal quality or other causes) can cause damage to property or personal injury. Or secure the use of the owlDrive with additional backup / security measures. Since malfunctions cannot be ruled out, owlRobotics GmbH cannot assume any liability for the application!
	Quickstart: Getting your motor to run (motor torque control)
	Example application: motor velocity control
	Open-loop velocity control
	Example application: position control
	Example application: motor angle synchronization
	FOC commander protocol (UART/USB)
	CAN protocol
	Motor parameters
	BLDC motor formulas
	Appendix A
	Attention: owlDrive 250-24 power should be 16-36V DC. The power supply must cover the max. motor current and the rated motor voltage. Use an external fuse to protect motor and motor driver. The fuse value must fit to the motor peak current.
	Attention: Do not use the owlDrive in applications where malfunctions of the owlDrive (e.g. due to problems in voltage, signal quality or other causes) can cause damage to property or personal injury. Or secure the use of the owlDrive with additional backup / security measures. Since malfunctions cannot be ruled out, owlRobotics GmbH cannot assume any liability for the application!

